Bootstrap AUC
3/25/2020 Ying Yang
New violinplot and more statistical tests (Paired T-test, Unpaired T-test, Z-test)
First, set environment variable
source /nfs/home/yingyang/.cshrc_opencadd
Get help information:
python /nfs/home/yingyang/scripts/bootstrap_AUC_violinoplot.py -h usage: bootstrap_AUC_violinoplot.py [-h] [-l LIG_FILE] [-d DEC_FILE] [-s1 REF] [-s2 NEW [NEW ...]] [-sys SYS_NAME] [-n {10..5000}] [-m {AUC,logAUC,both}] [-t {ttest_ind,ttest_rel,ztest}] optional arguments: -h, --help show this help message and exit -l LIG_FILE, -lig LIG_FILE File contain ligand names. (default: ligands.name) -d DEC_FILE, -dec DEC_FILE File contain decoys names. (default: decoys.name) -s1 REF Folder with method 1 (ref) score file: extract_all.sort.uniq.txt (default: None) -s2 NEW [NEW ...] Folder(s) with new method(s) score. extract_all.sort.uniq.txt (default: None) -sys SYS_NAME Name of system to add on plot (default: None) -n {10..5000}, -num {10..5000} Number of bootstrap replicate. (default: 50) -m {AUC,logAUC,both}, -metrics {AUC,logAUC,both} choose to use AUC or logAUC as the metrics. (default: both) -t {ttest_ind,ttest_rel,ztest}, -test {ttest_ind,ttest_rel,ztest} choose stats test to report p value. Default= (default: ztest)
Usage example: Compare the AUC and logAUC for three new methods comparing to standard dock. Bootstrap 100 times, and run a Z-test to get p-value.
python ~/scripts/bootstrap_AUC_violinoplot.py -s1 D4_dock/ -s2 amber/ rescore/ freeform/ -n 100 \ -l ligands.name -d decoys.name -m both -t ztest
Above example shows between standard and amber a delta logAUC of 0.97 is observed with a p value < 0.05, which indicating such difference is significant. In contrary, delta logAUC between standard and freeform of -0.08 is not siginificant.
A csv file with all the test results is also generated.
===================================================================================================================================================================================================
To test whether the difference in AUC/logAUC between two methods is statistically significant or not, AUC/logAUC of the new developed method(s) against the reference method can be compared with bootstrap.
Files needed:
- ligands.name --> file with ligand names to perform enrichment
- decoys.name --> file with decoy names to perform enrichment
- score file(s) --> extract_all.sort.uniq.txt
First, the anaconda python environment needs to be set:
source /nfs/home/yingyang/.cshrc_anaconda
Plot the variation of AUC/logAUC
python /nfs/home/yingyang/work/scripts/bootstrap_AUC.py \ -l ./ligands.name -d ./decoys.name \ -s1 extract_all.sort.uniq.txt \ -p single
The figure will looks like this:
Plot the change(s) in AUC/logAUC against reference score
python /nfs/home/yingyang/work/scripts/bootstrap_AUC.py \ -l ../ligands.name -d ../decoys.name \ -s1 score.standard -s2 score.amber score.freeform \ -p compare
Delta AUC and delta logAUC will be computed and displayed. The p-value from paired t-test indicate if change is statistically significant or not.