AutoQSAR/DeepChem for billions of molecules
2/25/2021 Ying Yang
Train a ML model based on smiles and scores
Model training requires GPU thus will be on gimel5
- Prepare the input file for training in the format of <smiles>,<dock score>
SMILES,DOCK score C[C@H]1COCCCN1C(=O)[C@@H]1CN2CCN1CCC2,-15.98 Cc1ccccc1-c1cc(C(=O)N2CC3(CN(C)C3)C2)n[nH]1,-17.43 CNC(=O)c1ccccc1NC(=O)[C@H]1C[C@H]2CCCCN2C1,-21.03 CC[C@H](F)CN[C@@H](CNC(=O)c1ccc(F)cc1F)C(C)C,4.73 C[C@@H]1CN(C(=O)C(=O)N[C@@H](c2cccc(F)c2)c2ccccn2)C[C@H]1N,13.34 CC(C)[C@H](NC(=O)NC[C@@H]1CCN(CCc2ccccc2)C1)C1CC1,5.9 CC[C@@H](F)CNCC1CCN(C(=O)c2ccc(F)s2)CC1,-14.68 Cc1cccc(C[C@@H](NCc2cccn2C)C2CC2)c1,-40.38 CC(C)NC(=O)c1ccc2nnc([C@H]3CN(Cc4ccccc4)CCN3C)n2c1,-23.15
IMHO, ML algorithm performs well with a normal distribution.
If < 30% molecules cannot be docked, it's safe to ignore the non-dockable (those without a dock score).
- Prepare the submission file, and submit to
cat <<EOF > sbatch_ml.sh #!/bin/bash #SBATCH --job-name=ml_deepchem #SBATCH --partition=gimel5.gpu #SBATCH --gres=gpu:1 #SBATCH --ntasks=1 hostname nvidia-smi source /nfs/home/yingyang/programs/ligand_ml/anaconda/etc/profile.d/conda.sh conda activate ligand_ml # CHANGE here: to your prepared input file infile=AL-dock_5HT5a_train.csv i=1 ligand_ml train model_\${i} \${infile} ligand_ml package model_\${i} \${I} EOF sbatch sbatch_ml.sh
Once the model training complete, you will see a folder 1/ and a file 1.tar.gz.
Transfer the ML model in folder 1/ to Wynton
scp -rp 1/ dt2.wynton.ucsf.edu:<path_to_where_to_run_prediction>
Apply the ML model to predict all molecules (smiles) of interest (on Wynton)
Prepare molecules (smiles) for prediction
For example, H26.smi is the file including ZINC ids and smiles of molecules for prediction
- set up the folder and break down the input smiles
mkdir raw cd raw split -l 50000 ../H26.smi - cd ../
- run molecules standardization
mkdir -p standardized set num=` ls raw/* | wc -l ` echo "Number of file to process:" $num cat << EOF > qsub_standardize.csh #\$ -S /bin/csh #\$ -cwd #\$ -pe smp 1 #\$ -l mem_free=2G #\$ -l scratch=5G #\$ -l h_rt=02:00:00 #\$ -j yes #\$ -o std.out #\$ -t 1-$num hostname date echo "" source /wynton/home/shoichetlab/yingyang/programs/ligand_ml/anaconda/etc/profile.d/conda.csh conda activate ligand_ml which python which ligand_ml echo "" set BASE_DIR=\`pwd\` # Do Not Edit Below This Point set RAW_DIR=\${BASE_DIR}/raw/ set DEST_DIR=\${BASE_DIR}/standardized/ set CUDA_VISIBLE_DEVICES=-1 python /wynton/home/shoichetlab/yingyang/scripts_ML/code/standardize.py \$SGE_TASK_ID \${RAW_DIR} \${DEST_DIR} EOF qsub qsub_standardize.csh
Once complete, check if the number of files in the standardize folder is the same as in the raw folder
Run prediction
Go to the folder where to run prediction (where ML model (1/) is located).
mkdir prediction set in=./ set model=1 set out=prediction_1 mkdir -p ${out} set num=` ls standardized/*.csv | wc -l ` echo "Number of file to process:" $num cat << EOF >! qsub_ml_${hac}.sh #\$ -S /bin/sh #\$ -cwd #\$ -pe smp 1 #\$ -l mem_free=50G #\$ -l scratch=50G #\$ -l h_rt=01:00:00 #\$ -o qsub_ml_${hac}.out #\$ -j yes #\$ -t 1-$num hostname date echo "" source /wynton/home/shoichetlab/yingyang/programs/ligand_ml/anaconda/etc/profile.d/conda.sh conda activate ligand_ml which python which ligand_ml echo "" # Set your variables export TRAIN_DIR=\$(pwd)/${in} export MODEL_NAME=$model export MODEL=\${TRAIN_DIR}/\${MODEL_NAME} export BASE_DIR=\$(pwd)/ export DEST_DIR=\${BASE_DIR}/${out}/ # Do Not Edit Below This Point export CODE_DIR=/wynton/home/shoichetlab/yingyang/scripts_ML/code export STANDARDIZED_DIR=\${BASE_DIR}/standardized/ export INFILE=\${STANDARDIZED_DIR}/\${SGE_TASK_ID}.csv export OUTFILE=\${DEST_DIR}/\${SGE_TASK_ID}.csv # Do path magic to set things up and use 1 cpu #export LD_LIBRARY_PATH=/nfs/soft/schrodinger/2019-4/internal/lib/cuda-stubs/:\$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/wynton/home/shoichetlab/yingyang/cuda-stubs/:\$LD_LIBRARY_PATH export CUDA_VISIBLE_DEVICES=-1 export CPU_STATS=\$(cat /dev/urandom | tr -cd 'a-f0-9' | head -c 32) export MY_CPU_FILE=\$(cat /dev/urandom | tr -cd 'a-f0-9' | head -c 32) sleep \$[ ( \$RANDOM % 10 ) ]s mpstat -P ALL 5 1 > /tmp/\$CPU_STATS python \${CODE_DIR}/get_idle_cpu.py /tmp/\$CPU_STATS /tmp/\$MY_CPU_FILE export MY_CPU=\$(cat /tmp/\$MY_CPU_FILE) echo "Using cpu \$MY_CPU" n=0 until [ \$n -ge 5 ] do echo "taskset -c \$MY_CPU ligand_ml evaluate \$MODEL \$INFILE \$OUTFILE --skip_standardization=True --skip_version_check=True" taskset -c \$MY_CPU ligand_ml evaluate \$MODEL \$INFILE \$OUTFILE --skip_standardization=True --skip_version_check=True && break n=\$[\$n+1] sleep 5 done EOF qsub qsub_ml.sh
Analyze prediction
Get the top 5% of ML prediction. A larger memory node is recommended for sorting...
source /wynton/home/shoichetlab/yingyang/programs/miniconda3/etc/profile.d/conda.sh conda activate opencadd # 50,000 mols per file # 12,500 --> 25% # 25,000 --> 5% # 5,000 --> 1% # CHANGE here: to the prediction folder dir_ml=prediction_1 echo "Process ${dir_ml} ... " rm ml_5percent.csv touch ml_5percent.csv for f in $(ls ${dir_ml}/* ); do echo $f head -n 25000 ${f} | egrep -hiv 'score|model' >> ml_5percent.csv done python /wynton/home/shoichetlab/yingyang/scripts_ML/out_analysis/sort_qsar_prediction.py ml_5percent.csv rm ml_5percent.csv
Once complete, the top 5% from ML prediction will be in ml_5percent_sort.csv
The same procedure can be applied to other scores: dock scores, FEP predicted values...