Reactivity axis
Jump to navigation
Jump to search
Here we describe the reactivity axis in the ZINC15, particularly in the exported subsets available via the tranche browser.
In the discussion below, ZINC12 standard subsets included: A, C, E.
The ZINC12 subsets known as "clean" subsets were just A and C.
The "I" subset was not loaded in ZINC12, and is only available in 2D (and possibly covalent libraries)
The Reactivity Axis
Class | Nickname | Description | How computed | Examples | internal score |
---|---|---|---|---|---|
A | Anodyne aka no-PAINS | No flags of any kind set | pattern_origin_fk is null | very unlikely to react or cause trouble in any way | 0 |
B | Chromophore | little things people complain about: nitros, chromophores, hydroxamates | not sure | chromophores (assay interference), heptanes (entropy), quarts (not permeable), nitros, hydroxamates. last chance to complain before anodyne | 5 |
C | ZINC clean aka PAINS-ok | Worst problem is a match with a PAINS with not clear mechanism | pattern_origin_fk =2 | many PAINS are simply frequent hitters, and many legitimate bioactives include PAINS. you may well wish to screen them and use PAINS as an annotation, not a filter | 10 |
D | Reserved2 | Future Use | no matches | example | 20 |
E | mildly reactive | mildly electrophilic, nucleophilic group or redox | pattern_type_fk in (1,2) | e.g. aldhydes, imines, thiols, michael acceptors, epoxides | 30 |
F | Reserved3 | Future Use | no matches | example | 40 |
G | reactive | generally electrophile, nucleophile or redox | pattern_type in (3,4) | e.g. thiocyanates, isothiocyanates | 50 |
H | Reserved4 | Future use | no matches | example | 60 |
I | Highly reactive | Too reactive to be considered as non-covalent ligands | pattern_origin=7 | typically reagents; could be used for covalent binding. e.g. boronic acids. alpha halo ketones, alkyl halides. Note includes cancer drugs. | 70 |
other concepts mentioned, must be fit in: chelation, redox, covalent, amphiphilicity
poor derivatizability, optimizability
we never build protomers of H, G, F.
we need to classify pains by assumed mechanism